## Link 4



Also $\quad \mathrm{V}_{\mathrm{b}}=\omega_{4} \times \mathrm{BI}_{14}$

$$
\begin{aligned}
& \omega_{4}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{BI}_{14}}=6.37 \mathrm{rad} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{C}}=\omega_{4} \mathrm{x} \mathrm{CI}_{14}=1.273 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Link 5

$\mathrm{V}_{\mathrm{C}}=\omega_{5} \mathrm{xCl}_{15}$
$\omega_{5}=\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{AI}_{15}}=1.72 \mathrm{rad} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{d}}=\omega_{5} \times \mathrm{DI}_{15}=0.826 \mathrm{~m} / \mathrm{s}$

> Answers
> $\mathrm{V}_{\mathrm{b}}=2.675 \mathrm{~m} / \mathrm{s}$
> $\mathrm{V}_{\mathrm{C}}=1.273 \mathrm{~m} / \mathrm{s}$
> $\mathrm{V}_{\mathrm{d}}=0.826 \mathrm{~m} / \mathrm{s}$
> $\omega_{\mathrm{ab}}=2.5 \mathrm{rad} / \mathrm{sec}$
> $\omega_{\mathrm{bc}}=6.37 \mathrm{rad} / \mathrm{sec}$
> $\omega_{\mathrm{cd}}=1.72 \mathrm{rad} / \mathrm{sec}$

- In the toggle mechanism shown in figure the slider D is constrained to move in a horizontal path the crank OA is rotating in CCW direction at a speed of 180 rpm the dimensions of various links are as follows:

$$
\begin{array}{ll}
\mathrm{OA}=180 \mathrm{~mm} & \mathrm{CB}=240 \mathrm{~mm} \\
\mathrm{AB}=360 \mathrm{~mm} & \mathrm{BD}=540 \mathrm{~mm}
\end{array}
$$

Find,
i) Velocity of slider
ii) Angular velocity of links $\mathrm{AB}, \mathrm{CB}$ and BD .


$$
\mathrm{V}_{\mathrm{a}}=\omega_{2} \mathrm{x} \mathrm{AI}_{12}=3.4 \mathrm{~m} / \mathrm{s}
$$

Link 3

$\mathrm{V}_{\mathrm{a}}=\omega_{3} \times \mathrm{AI}_{13}$
$\omega_{3}=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{AI}_{13}}=2.44 \mathrm{rad} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{b}}=\omega_{3} \times \mathrm{BI}_{13}$
Link 4

$\mathrm{V}_{\mathrm{b}}=\omega_{4} \times \mathrm{BI}_{14}$
$\omega_{4}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{AI}_{14}}=11.875 \mathrm{rad} / \mathrm{sec}$
Link 5


$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b}}=\omega_{5} \times \mathrm{BI}_{15} \\
& \omega_{5}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{AI}_{15}}=4.37 \mathrm{rad} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{d}}=\omega_{5} \times \mathrm{DI}_{15}=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Answers } \\
& \mathrm{V}_{\mathrm{d}}=2 \mathrm{~m} / \mathrm{s} \\
& \omega_{\mathrm{ab}}=2.44 \mathrm{rad} / \mathrm{sec} \\
& \omega_{\mathrm{bc}}=11.875 \mathrm{rad} / \mathrm{sec} \\
& \omega_{\mathrm{cd}}=4.37 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

